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It is well known that the excitation of Tollmien-- Schlichting waves by acoustic and 
vortex fields can appreciably influence transition to turbulence in a boundary layer. A 
large number of studies is devoted to the investigation of the excitation process of Toll- 
mien- Schlichting waves (TS-waves) in the boundary layer on a smooth flat plate (see [i, 2]). 
Laboratory and numerical experiments showed that boundary layer waves appear in the neighbor- 
hood of the plate leading edge [i, 3, 4]. The onset of TS-waves can be considered as the 
result of scattering of the external field on concentrated roughness, viz, the plate leading 
edge. Distributed excitation was not observed on the plate itself [3]. The reason for this 
is that distributed excitation on a smooth plate can be caused only by linear interaction 
of external disturbances with the boundary layer waves which is ineffective in view of the 
large difference in phase velocities. The excitation of TS-waves in the presence of scatter- 
ing of acoustic and vortex disturbances in the boundary layer on a surface with distributed 
waviness, whose characteristic wavelength in the streamwise directionis less than or is of 
the order of TS-waves is studied in this paper. The principle of the scattering process lies 
in coincident harmonic summation of the spatial spectrum of the roughness with the harmonics of 
the external field. In this case coincident "forces" could occur both in the boundary layer 
and on the plate surface which could be in resonance with the induced wave in spite of the 
absence of resonance of this wave with the external field. In the case of ~distributed rough- 
ness, spatial accumulation of the scattering process takes place (distributed generation). 
The interest in the given mechanism is for a number of reasons. Firstly, after the onset of 
the wave at the plate leading edge it manages to get strongly damped in the passive segment 
of the boundary layer [4]. In scattering over distributed roughness, disturbances are car- 
ried directly into the active area of the boundary layer which creates an advantage in terms 
of excitation effectiveness. Secondly, there is no generation near the leading edge with the 
superposition of streamwise acoustic field or vortex disturbances, localized outside the 
boundary layer [i]. The distributed mechanism does not have such "sensitivity" to the type 
of disturbance. The effectiveness of scattering is estimated for just these two types of 
external disturbances. Computations are carried out for one-dimensional sinusoidal and ran- 
dom waviness. 

i. Consider a Blasiusboundarylayer on a surface with a small waviness described by a 
single-valued function y = q(X, z). We use the quasiparallel model for the boundary-layer 
flow, expressing velocity field in the form v = U(y/6,)i + v~, where U is the velocity pro- 
file in the boundary layer on the flat plate surface y = 0; 6,(x) is the displacement thick- 
ness; v~ is the disturbance in the initial flow. Using series expansion in terms of small 
q, the boundary condition v = 01y= q can be reduced to the following relations on the sur- 
face y = 0: 

&, OU 3u 
v+- -C- jn+  . . . .  o, u + - c / j  n + - s F n +  . . . .  o, 

W-i- 6~--w ~1@ . . . .  0 for y-----O, uy 

(1.1) 

where u, v, and w are the components of v~ along x, y, and z, respectively. Boundary condi- 
tions in form (I.I) make it possible to consider the roughness as an external "force" within 
the framework of the boundary-layer model on a flat surface. 
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The disturbance velocity vi and pressure Pi caused by waviness is expressed in the form 
of a series in powers of ~. Total velocity and pressure disturbances are sought in the form 
of a series in terms of scattering frequency [5]: 

v_ = v i  + v ( 0 ) + v ( O +  .... p_  = p i + p ( O ) +  p{1)+., . ,  

where v ( o ) ,  p (o )  i s  t he  f i e l d  in  t he  b o u n d a r y  l a y e r  on a smooth s u r f a c e ;  v ( n ) ,  p (n)  (n = 
1, 2, . . . )  a r e  t he  componen t s  o f  t he  s c a t t e r i n g  f i e l d  % n n.  F u r t h e r  a n a l y s i s  i s  l i m i t e d  to  
s i n g l e  f r e q u e n c y  s c a t t e r i n g  when the  f u n d a m e n t a l  c o n t r i b u t i o n s  to  t h e  s c a t t e r e d  f i e l d  a r e  
made by V ( : )  and p ( ~ ) .  The b o u n d a r i e s  f o r  t h e  a p p l i c a b i l i t y  o f  s i n g l e  f r e q u e n c y  s c a t t e r i n g  
a p p r o x i m a t i o n  w i l l  be  d e t e r m i n e d  i n  S e c t i o n  3~ We s p e c i f y a c o u s t i c  and v o r t e x  d i s t u r b a n c e s  
in  t he  fo rm o f  s i n u s o i d a l  waves  %Re[exp( ik~x  -- i ~ t ) ]  (~ and k a r e  t h e  f r e q u e n c y  and wave 
number,  r e s p e c t i v e l y ) .  I n t e r a c t i n g  w i t h  t he  h a r m o n i c s  of  d i s t r i b u t e d  r o u g h n e s s  ~ e x p ( i k x x  + 
i k z z )  (a i s  t h e  wave number o f  t h r e e  d i m e n s i o n a l  TS-waves  (~,  kz)  ) .  The mos t  e f f e c t i v e  
s c a t t e r i n g  i s  made by the  h a r m o n i c s  of  r o u g h n e s s  s a t i s f y i n g  the  r e s o n a n c e  c o n d i t i o n  

k~ = Re a -- k~. (i. 2) 

If the roughness spectrum is continuous and two-dimensional, the condition (1.2) can be sat- 
isfied for a wide range of values of k z. It follows from (1.2) that acoustic scattering in the 
subsonic boundary layer takes place on the components of the roughness spectrum k = Re a. 

x 
Let x c = Xc(m , kz) be the critical point for the induced wave. In the region x < Xc 

the generated waves are damped and hence are not capable of competing with those generated 
at x = x c. The same disturbances that are created in the unstable region give way to neu- 
tral disturbances along the growth length. It follows that the boundary-layer region adja- 
cent to the critical point is most sensitive to the distributed action. 

2. Consider acoustic scattering on one-dimensional waviness n = n(x) which excites two- 
dimensional TS waves. The basic equations are for a barotropic viscous fluid. The velocity 
field resulting from the flow past the wavy surface is described by the stream function 
~(x, y) = ~(i) + ~(2) + ... (~n) (n = I, 2, o~o) are the components ~nn)~ Neglecting the de- 

pendence of ~, on x switching over to spectral representation using the equation 

= S ~ (x, g) e-ikxdx, 
- - o o  

we get for ~ = _$(I)/ ~(~U/Sy)o (n(k) is the spectrum of n(x)) an equation of the type 

-- --" __ __ , ~ /_-7:_IV o7.2 .-~dr 
_ + = o ,  ( 2 . 1 )  

where R = u=6,/v is the local Reynolds number (u~ is the free stream velocity, ~ is the kine- 
matic viscosity); ~ = U/u~; YN = y/5,: k N = k~, (here and in what follows, the index N de- 
notes variables normalized with respect to displacement thickness and prime denotes differ- 
entiation with respect to ~. The variable ~ does not depend on n, since boundary condi- 
tions follow from (i.i) T ~Nv, ~' = IIY N = o; as YN § ~' as usual, the condition ~ § 0 is 
introduced. Equation (2.1) is a particular case o~ the Orr-- Sommerfeld equation which is 
well known in hydrodynamic stability theory [6]. In the present case this equation gener- 
ates the nonhomogeneous boundary-value problem for the disturbance profile whose phase 

velocity is zero. 

Acoustic field is specified in the form of the fundamental mode of the waveguide, one 
of whose boundaries is the plate surface and the other is outside the boundary layer. Ne- 
glecting the fluid motion and acoustic damping over the region of wave generation, the 

acoustic field is written in the form 

1 eih~x-io~t (u, v, p) = =7- s (e,, e.. e~) + c .c .  (2.2) 

where e~ = 1 -- exp(Sy); e2 = --(ikm/~)[l -- exp(Sy); e3 = • c/p (p is the fluid density); 
i%0 = • u/c; c is the speed of sound, signs • refer to waves propagating downstream and up- 
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stream, respectively; ~ = (i -- i)/-~. The thickness of the viscous wall layer in the 
acoustic field ~w = ~2"6-/~with excited TS-waves usually satisfies the condition ~w << 6,. 

Equations for the scattered field take the form 

where 

au (1) 0u (~) i ap (~) f 02u (i) a'~u 0-) 
o--T -4-. U ~ + aua,~ v(1) + -6 ~ + v ~ ~ + --a,/" ) = f~' 

0v (1) av(~) ] a p  (~) . [ a2v (1) a2U(1) ~ OH '(1) Oy(1) 
0t + ~ - ~ - x  + ~  - 0--~ ~ - ' [ ~ + ~ = / ~ ,  --~x+-~T-~=/~, 

/ 1 -  c2p at u-T~-  x - -  v-g~-g ; [ ~ =  c'~p at v--~-g - - u  ax ; 

c2p c Zp \ ax 

(2.3) 

(2.4) 

(n % I is the nonlinear parameter of the medium [7]). The variables u, v, and p in (2.4) 
are the superpositions of acoustic waves (2.2) and the flow field past wavy surface; in 
accordance with the procedure for the elimination of fi from (2.3) it is necessary to exclude 
terms depending only on vi, Pi" Boundary conditions at y = 0 have the form v (~) = -- (Zv(~ 

~y)n, u (~) = --(~u(~ 

Consider distributed excitation of TS-waves with frequency of sound m (the scale of the 
excitation region L, >> i/Re ~). Following quasiparallel flow model we shall completely ne- 
glect the derivatives of 6, with respect to x. Switching over from system (2.3) to one 
equation for v(x) , we represent its solution in the form 

i 
v(~) = T a (x) (~ (y~) em-~o)~ + r. c. + 5v, (2.5) 

where e = ;Re adx; a(x) 
by 2~); 6v is the additional term of the order (L,Re ~)-x<< i; a and 
and the eigenfunction of the boundary-value problem 

is the complex wave amplitude (change in a(x) is small as e changes 
are the eigenvalue 

) , ,,+ ( r  + 
g 

= 0 ,  ( 2 . 6 )  

w h e r e  a N = ~ 6 , ,  ~N = ~ 6 , / t ~ o .  

da/dx ~ "fa + F(1), 

w h e r e  y = - - I m  a i s  t h e  i n c r e m e n t  i n  s p a t i a l  g r o w t h  o f  t h e  w a v e ;  
w h i c h  i s  d e t e r m i n e d  f r o m  t h e  c o n d i t i o n  f o r  t h e  b o u n d e d n e s s  o f  6 v .  
cedure [8], we get 

F(1) T~ so dk~  ( k) ei(h+~) ~r d 
- - o o  

0,3 

w h e r e  o - -  ~ /~2 , ;  ~N ~ OS + aV; ~V ----- QxdY~; ~s = ---~-ff-- z (0); 
0 

2--" eftNyN) (~,, Q CZNUo [(1 - -  - -  k~,~) - -  iO, NR~e~NVN], 

�9 ~ - -- ~ {p zdg~. 
0 

The derivative da/dx is sought in the form 

(2.7) 

F (~) is the unknown function 
Using the standard pro- 

(2.8) 

( 2 . 9 )  

357 



I J ~ , ~  

Fig. I 

Here B = (i-- I)~NR/2; X(y N) is the eigenfunction of the conjugate boundary-value problem 
(2.6) ~9]; ~ is the solution to (2.1) for the resonant component of the roughness spectrum 

= Re ~ -- k~ (k-- N = k~,)*. In computing the scatter coefficient ~ the Mach number M = u~/c 
was assumed to be small and quantities of the order O(M) were neglected. The terms Ov and 
~ describe volumetric and surface scattering, respectively. It is worth noting that in the 
present approximation o depends only on the streamwise velocity component in the acoustic 
field and does not depend on the direction of sound propagation. 

The problem of the excitation of TS-waves by vortex disturbances also leads to Eqs. 
(2.3). Consider the scattering of weak vortex disturbances drifting into the region of uni- 
form flow (y > 3). Their stream function is represented in the form 

O, O ~ y ~ 3 ,  
(2.10) 

where k~ = ~/u~; ~ and s are the vortex wave profile and amplitude, respectively. Neglecting 
viscous vortex diffusion over lengths 2L,, the profile ~ may be specified arbitrarily. There 
is no surface scattering of disturbances (2.10) (~ = 0), and the spatial scattering is deter- 
mined by the coefficient o v. In computing the latter from (2.9) it is necessary to put 

Since the velocity field in the region y > 3 is nearly potential, scattering is determined by 
disturbance vorticity (2.10). 

3. Consider the excitation process of TS-waves on the basis of Eqs. (2.7) and (2.8) in 
the presence scatter on roughness. The dependence of the growth rate Y of TS-waves (curve I) 
and the increment in wave number A~ = Re ~ -- ~c (curve 2) on x are schematically shown in 
Fig. i. Solving (2.7) with the boundary condition a(xo) = 0 (xo is chosen in the damped 
region sufficiently far from the critical point Xc) , we get 

a=aeff(x) K(x) K=exp ,f7 dx ' 
L~r (3. i) 

%ff = S f (I) ( i /K) dx. 

Here K(x) is the growth rate of the boundary layer, the factor aef f is the effective (re- 
duced to the critical point) amplitude of the induced wave. The function I/K within the 
integrand in (3.1) has a maximum at x = x c which formally confirms the qualitative descrip- 
tion of the formation of the induced field, as shown in Section i. 

Consider scattering on sinusoidal waviness q = sin k~x. In this case Eq. (2.8) is true 
in a sufficiently small neighborhood of that point where The resonance condition is met. 
Considering the dominance of the contribution by the region adjacent to the critical point, 
we limit the analysis to the case of small deviations from resonance at this point (IAk! << 
~c' Ak = kg -- km -- ac). Using linear approximation near x = xc, Y = Pr(X -- Xc), Aa = ~i(x -- 

Xc) , where ~r+:~i i= i(~a/~x^) has been introduced. Neglecting the change in o in the zone of 

wave excitation and using (~.i) and (2~ we get 

*The stationary phase of the exponential term in (2.8) corresponds to resonance. 
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i--~--~ .[~1/2 [ (Ak)21 (3.2) 
ae f f=~sac d  . e 2 d~ = - ~ [ - T M  sa~dexp[ - - -~ - j ,  

w h e r e  o c = ~ i x  - x ; ~ = x - -  x c .  S i n c e  a t  x - -  x c > L , ,  x c --  xo  > L ,  t h e  i n t e g r a l  w e a k l y  d e -  
- C 

p e n d s  on  x and  x o ,  t h e  i n t e g r a t i o n  l i m i t s  i n  ( 3 . 1 )  a r e  e x t e n d e d  t o  i n f i n i t y .  E q u a t i o n  ( 3 . 2 )  
s h o w s  t h a t  t h e  i n d u c e d  f i e l d  i s  a max imum w h e n  t h e  r e s o n a n c e  c o n d i t i o n  i s  f u l f i l l e d  a t  t h e  
critical point (hk = 0) o The size of the generation zone determined from the condition that 
aeff is 0.84 of the limiting value (3.2), equals L, = (2/I~[) I/2. The presence of ~i in L, 
reflects the fact that the extent of the generation region decreases as a result of waves 
coming out of resonance. The solution (3~ is obtained for small ratios L,/(x m- Xc). 
Using the estimates ~r ~ Y(Xm)/(Xm -- Xc), ~i ~ A~(xm)/(Xm-- Xc), it is possible to observe 
that the greater thewave growth and phase incursion i~he active zone of theboundary layer, the 
smaller is this ratio. At frequencies of practical interest this ratio is very small. For 
example, at ~Nlx = Xc = 0.038, we get L,/(x m- Xc) = 0.35. It is possible to show that the 
linear approximation of y andAe isgood right up toL, ~ 0.5(x m -- Xc). If in the transforma- 
tion to (3 2) we put o = o + a'(x -- x~) then the term bo x ' for Ak = 0 does not contribute 

" C X ' 

to aeff. Since the characteristic scale for the change in o is x m -- Xc, the latter denotes 
that the accuracy of Eq. (3.2) is characterized by the square of the ratio L,/(x m- Xc). 

Consider briefly the scatter on random one-dimensional roughness described by the 
spatially homogeneous random function n(x) (average ensemble <n> = 0). Using Eqs. (2.8) 
and (3.1) with the assumption of a narrow generation zone we get 

< l a t~>,  ~ = K(x)A~ff, 

where ~ff :~2~[oc12s~ f d•215 i--~] br• ' (G(K) is the spectral density < 2>). 

I f  t h e r e  i s  a s m a l l  c h a n g e  G i n t h e  s c a l e l e  ! ~ I / ~ r  i n  t h e  n e i g h b o r h o o d  o f  r e s o n a n c e ,  t h e  
expression for Aef f takes the form 

Aeff  = 

The value of Aef f does not depend on ~,, which agrees with the known result from wave theory 
on the independence of random interactlon from phase relations. For the same reason, the 
size of the excitation zone in the present case is completely determined by the behavior of 
the increment: L, : (i/~r):/=. The strength of induced wave is proportional to the spectral 
strength <n2>. For a fixed <q2> the maximum effect is achieved for the scatter on a wavy 
surface with a characteristic roughness of the order I/Re a. 

Within the framework of the above-described procedure for the solution of (2.7) and 
(2.8), it is possible to consider weak flow nonparallelness, by maintaining a constant de- 
rivative of ~, with respect to x and a small transverse component of flow velocity. On 
the basis of the results of [8] it is possible to show that flow nonparallelness results in 
a small (of the order of I/R) complex additive to the increment in (2.7) of quasiparallel 
theory. Here F(:) practically does not change since the profile ~ and the warty flow field 
satisfy equations of quasiparallei theory with an accuracy of up to order ~ I/R. The addi- 
tion to y depends on the normalization of the profile ~ . Further, in computing o N we shall 
use the normalization max I(I/~N)~' I = i, which determines lal as the maximum amplitude of 
streamwise velocity fluctuations on the TS-wave profile. The increment to y weakly shifts 
the critical point and in the narrow region of wave excitation leads to small changes in 
the growth coefficient K of quasiparallel theory. As a result, the changes in amplitude 
a_=f will be small, which should then be considered the effective amplitude reduced to the ez 
critical point of the nonparallel flow. Here the critical point is that point at which the 
maximum amplitude of streamwise velocity begins to grow. It is known that the neutral curve 
of the boundary layer on a small wavy surface is displaced with respect to its position on 
a smooth flat plate [i0]. This effect can be i~cluded in (2.7) if one considers the double 
scatter of TS-wave on roughness. The change in aeff will also be small in view of the small 
value of the corresponding increment in y. 
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0,8 rZ---- i .... 

Let us briefly discuss the question of the limits of applicability of single scatter 
approximation. Since no slip condition at the surface leads to the formation of a thin vis- 
cous layer near it, the limitation on the height of waviness appears to be appreciably 
stronger than the simple condition of being small with respect to displacement thickness. 
It is necessary to require that the vertical scale of the velocity field near the surface H 
is greater than the wave height h = max l ql. In the acoustic field and in TS-wave near the 
surface, viscous layers appear; their scales are identical and equal to I w << 6, [6, Ii]. 
Hence it follows that the limitation on the wave height is of the type h/l w << i. In the 
case of roughnesses with characteristic length I ~ h, it is not possible to limit to the 
linear term in the expansion of the flow field about n, since H ~h. In the case of smooth 
nonuniformities (h << l~ i/Re ~), comparing viscous and inviscid terms of Eq. (2.1), it is 
possible to introduce a transverse scale for flow field Ix = [Iv/(~U/Sy)o]x/3t. It is pos- 
sible to show that H ~ Ix when h~x ~ i and H ~ Z if l, ~I.$ 

Thus, the limitation on the roughness height associated with the flow takes the form 
h/Ix << i. 

4. In order to compute aef f it is necessary to find ~ and derive the functions ~, ~, X. 
Denote the "current" frequency and wave number of the boundary layer by ~N = ~6,/u~ and 
K N -- k~,, respectively. Linearizing the dispersion equation of quasiparallel flow theory 
~N -- ~N(KN, R) in the neighborhood of the critical point and considering the relation R- R c 
= (3/2~/6, it is possible to obtain 

(ahN/~K~ ~ ~N ], 
where the index c means that the expression is taken at the critical point; 6 c = 6,(xc). 

The function ~ is obtained as the sum of "viscous" and "inviscid" solutions (see, simi- 
larly [6]). The "viscous"solution has a characteristic length l, N = ('~o'~NR) and locally close 
to the surface YN = 0 and the"inviscid" solution is found with ideal fluid approximation 
(R = ~). Computed results are shown in Fig. 2 for ~ at thepointk N ~ 0.134, R = 1620 (curves 
1 and 2 for Re ~ and Imp, respectively). 

Equations for ~ and X were solved by the Runge--Kutta method with orthonormalization. 
Effective amplitude of TS-waves induced at the surface with sinusoidal waviness was sought 
for exact resonance at the critical point R c = 1620, where ~N = 0.134, ~N = 0.038, ~ = (2.9 -- 
1.46i) ' i0 "s. Computations for acoustic scattering give Os = 0.32 + 0.11, Oy = 0.i 0.16i. 

In order to estimate the effectiveness of vortex scattering the disturbance profile was 

given in the form 

Here s in Eq. (2.10) is the amplitude Of the maximum streamwise velocity fluctuations and the 
streamwise velocity profile [~'I qualitatively agrees with the result obtained in [i]. When 

tFor roughnesses with I = 1/Re ~ the scale Ix << 6, coincides with the scale for the critical 
layer of TS-wave [6]. 
When l:~ ~ h, the quantity H is estimated using the known equation for boundary-layer thick- 

ness [12]: H ~ ~'~ (Rl = hl(~U/~y)o/~ is the Reynolds number based on roughness). 
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bo = 5, bl = i for resonant waviness with wave number kN = 0.i, the scatter coefficient is 

a N = (4.86 + 0.32i).I0 -s 

The effect of induced wave on the transition to turbulence depends on its amplitude, 
growth rate, and background noise which causes transition in the absence of the induced wave. 
According to the data given in [13], the maximum growth for R c = 1620 is e ~~ We shall con- 
sider background noise to be such that at the "natural" transition point the growth rate 
becomes e6. In order to shift the transition point it is necessary that the induced field 
at K = e 6 attains the level of strong nonlinearity Utr. According to the measurements in 
[14], we assume Utr = 0.02u~. In order to excite such a wave by scatter on waviness with 
parameters d/~ c = 0.5~w/6 c = 0.09, kg6 c = 0.134, it is necessary to have noise with amplitude 
s = 0.5.10 -s. The vortex disturbance should have an amplitude s = 0.05 with kg6 c = 0. i. In 
particular, if there is an air flow over a flat plate with velocity u = 25 m/sec, it is 
necessary to have a noise level of 41 dB in order to excite waves with frequency 156 Hz by 
a scatter on waviness with d = 0.09 mm and period 4.55 cm. In the case of vortex distur- 
bances resonant waviness has a period 6.35 cm. 

Thus, scattering of acoustic and vortex disturbances in a boundary layer on a wavy sur- 
face can lead to distributed excitation of Tollmien-- Schlichting waves. Computations show 
that even with extremely small waviness, whose height satisfies requirements for single scat- 
ter, it is possible to attain induced wave strength sufficient to shift the transition point 
to turbulence. In the case of scattering on sinusoidal waviness the most effectively excited 
waves are those for which resonance conditions are fulfilled at the critical point (for a 
fixed period of waviness, resonance conditions can be satisfied by varying the frequency of 
external disturbances). Scatter on random waviness is determined by resonant harmonics of 
its spectrum. 
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